In the Specification: Amend line 22 in the paragraph starting on page 3, line 13, as follows: The present invention provides a compound of formula (I) $$R^2$$ R^3 R^4 R^5 R^5 or a salt, ester, amide or prodrug thereof; where X is O, or S, S(O), S(O)₂ or NR⁶ where R⁶ is hydrogen or C_{1-6} alkyl; R⁵ is an optionally substituted 6-membered aromatic ring containing at least one nitrogen atom, and R¹, R², R³, R⁴ are independently selected from halogeno, cyano, nitro, C_{1-3} alkylsulphanyl, -N(OH) R^7 - (wherein R^7 is hydrogen, or C_{1-3} alkyl), or R^9X^1 - [[(]]wherein X^1 represents a direct bond, -O-, -CH₂-, -OC(O)-, -C(O)-, -S-, -SO-, -SO₂-, -NR¹⁰C(O)-, -C(O)NR¹¹-, -SO₂NR¹²-, -NR¹³SO₂- or -NR¹⁴- (wherein R¹⁰, R¹¹, R¹², R¹³ and R¹⁴ each independently represents hydrogen, C_{1-3} alkyl, hydroxy C_{1-4} alkyl or C_{1-3} alkoxy C_{2-3} alkyl), and R⁹ is hydrogen, optionally substituted hydrocarbyl, optionally substituted heterocyclyl or optionally substituted alkoxy; provided that at least one of R² or R³ is other than hydrogen. Amend lines 18 and 20 in the paragraph starting on page 5, line 18, as follows: In particular, optional substituents for hydrocarbyl, heterocyclyl heterocyclyl or alkoxy groups R^{77} , R^{78} and R^{79} include halo, perhaloalkyl such as trifluoromethyl, mercapto, hydroxy, carboxy, alkoxy, heteroaryl, heteroaryloxy,[[,]] alkenyloxy, alkynyloxy, alkoxyalkoxy, aryloxy (where the aryl group may be substituted by halo, nitro, or hydroxy), cyano, nitro, amino, monoor di-alkyl amino, oximino or $S(O)_y R^{90}$ where y is as defined above and R^{90} is a hydrocarbyl group such as alkyl. Amend line 15 in the section starting on page 6, line 9, as follows: 3) -R^bX³R²⁰ (wherein X³ represents -O-, -C(O)-, -S-, -SO-, -SO₂-, -OC(O)-, -NR²¹C(O)_s-, -C(O)NR²²-, -SO₂NR²³-, -NR²⁴SO₂- or -NR²⁵- (wherein R²¹, R²², R²³, R²⁴ and R²⁵ each independently represents hydrogen, or alkyl optionally substituted with a functional group and s is 1 or 2) and R²⁰ represents hydrogen, hydrocarbyl (as defined herein) or a saturated heterocyclic group, wherein the hydrocarbyl or heterocyclic groups may be optionally substituted by one or more functional groups and the heterocyclic groups may additionally be substituted by a hydrocarbyl group); Amend line 20 in the section starting on page 6, line 16, as follows: 4) $-R^c X^4 R^{c'} X^5 R^{26}$ (wherein X^4 and X^5 which may be the same or different are each -O-, -C(O)-, -S-, -SO-, -SO₂-, -OC(O)-, -NR²⁷C(O)₅-, -C(O)_xNR²⁸-, -SO₂NR²⁹-, -NR³⁰SO₂- or -NR³¹- (wherein R²⁷, R²⁸, R²⁹, R³⁰ and R³¹ each independently represents hydrogen or alkyl optionally substituted by a functional group and s is 1 or 2) and R²⁶ represents hydrogen, or alkyl optionally substituted by a functional group); Amend lines 9 and 10 on page 8 in the section starting on page 7, line 29 as follows: 22) - R^v R⁵⁸(R^{v'})_q(X⁹)_rR⁵⁹(wherein X⁹ is as defined hereinbefore, q is 0 or 1, r is 0 or 1, and R⁵⁸ is a C₁₋₃alkylene group or a cyclic group selected from divalent cycloalkyl or heterocyclic group, which C₁₋₃alkylene group may be substituted by one or more functional groups or by a hydrocarbyl group optionally substituted by one or more functional groups or heterocyclyl groups, or by a heterocyclyl group optionally substituted by one or more functional groups or hydrocarbyl groups; and R⁵⁹ is hydrogen, C₁₋₃alkyl, or a cyclic group selected from cycloalkyl or heterocyclic group, which C₁₋₃alkylene group may be substituted by one or more functional groups and which cyclic group may be substituted by one or more functional groups or by a hydrocarbyl group optionally substituted by one or more functional groups or heterocyclyl groups, or by a heterocyclyl group optionally substituted by one or more functional groups or hydrocarbyl groups); and wherein R^a , R^b , R^b , R^c , R^c , R^d , $R[[g]]_-^g$, R^j , R^n , R^n , R^p , R^p , R^t , R^u , R^v and R^v are independently selected from C_{1-8} alkylene groups optionally substitued by one or more substituents functional groups, R^e R^h, R^k and R^t are independently selected from C₂₋₈alkenylene groups optionally substituted by one or more functional groups, and Docket No.: ASZD-P01-598 R^f , R^i , R^m and R^u are independently selected from by C_{2-8} alkynylene groups optionally substituted by one or more functional groups. Amend line 14 in the section starting on page 9, line 10, as follows: 4) $-R^c X^4 R^{c'} X^5 R^{26}$ (wherein X^4 and X^5 which may be the same or different are each -O-, C(O), -S-, -SO-, -SO₂-, $-NR^{27}C(O)_s$ -, $-C(O)_xNR^{28}$ -, $-SO_2NR^{29}$ -, $-NR^{30}SO_2$ - or $-NR^{31}$ - (wherein R^{27} , R^{28} , R^{29} , R^{30} and R^{31} each independently represents hydrogen, C_{1-3} alkyl or C_{1-3} alkoxy C_{2-3} alkyl and s is 1 or 2) and R^{26} represents hydrogen, C_{1-3} alkyl, hydroxy C_{1-3} alkyl or C_{1-3} alkoxy C_{2-3} alkyl); Amend line 15 in the section starting at the top of page 10, as follows: 9) R³³ (wherein R³³ represents a pyridone group, a phenyl group or a 5-6-membered aromatic heterocyclic group (linked via carbon or nitrogen) with 1-3 heteroatoms selected from O, N and S, which pyridone, phenyl or aromatic heterocyclic group may carry up to 5 substituents selected from hydroxy, nitro, halogeno, amino, C₁₋₄alkyl, C₁₋₄alkoxy, C₁₋₄hydroxyalkyl, C₁₋₄aminoalkyl, C₁₋₄alkylamino, C₁₋₄hydroxyalkoxy, oxo, cyanoC₁₋₄alkyl, cyclopropyl, C₁₋₄alkylsulphonylC₁₋₄alkyl, C₁₋₄alkoxycarbonyl, di(C₁₋₄alkyl)amino, C₁₋₄alkylaminoC₁₋₄alkyl, C₁₋₄alkanoyl, di(C₁₋₄alkyl)aminoC₁₋₄alkyl, C₁₋₄alkylaminoC₁₋₄alkoxy, di(C₁₋₄alkyl)aminoC₁₋₄alkoxy, carboxy, carboxamido, trifluoromethyl, cyano, -C(O)NR³⁸R³⁹, -NR⁴⁰C(O)R⁴¹ (wherein R³⁸, R³⁹, R⁴⁰ and R⁴¹, which may be the same or different, each represents hydrogen, C₁₋₄alkyl, hydroxyC₁₋₄alkyl or C₁₋₃alkoxyC₂₋₃alkyl) and a group -(-O-)_f(C₁₋₄alkyl)_gringD (wherein f is 0 or 1, g is 0 or 1 and ring D is a cyclic group selected from C₃₋₆cycloalkyl, aryl or 5-6-membered saturated or unsaturated heterocyclic group with 1-2 heteroatoms, selected independently from O, S and N, which cyclic group may bear one or more substituents selected from halo and C₁₋₄alkyl)); Amend line 19 in the section starting on page 10, line 19, as follows: 13) $-R^{j}$ $X^{6}R^{33}$ (wherein X^{6} represents -O-, -C(O)-, -S-, -SO-, -SO-, -OC(O)-, $-NR^{38}C(O)$ -, $-C(O)NR^{39}$ -, $-SO_{2}NR^{40}$ -, $-NR^{41}SO_{2}$ - or $-NR^{42}$ - (wherein R^{38} , R^{39} , R^{40} , R^{41} and R^{42} each independently represents hydrogen, C_{1-3} alkyl, hydroxy C_{1-3} alkyl or C_{1-3} alkoxy C_{2-3} alkyl) and R^{33} is as defined hereinbefore); Amend lines 11 and 16 on page 12 in the section starting on page 11, line 16, as follows: 22) - $R^v R^{58}(R^{v'})_q(X^9)_r R^{59}$ (wherein X^9 is as defined hereinbefore, q is 0 or 1, r is 0 or 1, and R^{58} is a C_{1-3} alkylene group or a cyclic group selected from cyclopropyl, cyclobutyl, cyclopentylene, cyclohexylene or a 5-6-membered saturated heterocyclic group with 1-2 heteroatoms, selected independently from O, S and N, which C_{1-3} alkylene group may bear 1 or 2 substituents selected from oxo, hydroxy, halogeno and C_{1-4} alkoxy and which cyclic group may bear 1 or 2 substituents selected from oxo, hydroxy, halogeno, cyano, $$\begin{split} &C_{1\text{-4}}\text{cyanoalkyl},\ C_{1\text{-4}}\text{alkyl},\ C_{1\text{-4}}\text{hydroxyalkyl},\ C_{1\text{-4}}\text{alkoxy},\ C_{1\text{-4}}\text{alkoxy}C_{1\text{-4}}\text{alkyl},\\ &C_{1\text{-4}}\text{alkylsulphonyl}C_{1\text{-4}}\text{alkyl},\ C_{1\text{-4}}\text{alkoxycarbonyl},\ C_{1\text{-4}}\text{aminoalkyl},\ C_{1\text{-4}}\text{alkylamino},\\ &\text{di}(C_{1\text{-4}}\text{alkyl})\text{amino},\ C_{1\text{-4}}\text{alkylamino}C_{1\text{-4}}\text{alkyl},\ di(C_{1\text{-4}}\text{alkyl})\text{amino}C_{1\text{-4}}\text{alkyl}, \end{split}$$ C₁₋₄alkylaminoC₁₋₄alkoxy, di(C₁₋₄alkyl)aminoC₁₋₄alkoxy and a group -(-O-)_f(C₁₋₄alkyl)_gringD (wherein f is 0 or 1, g is 0 or 1 and ring D is a cyclic group selected from C₃₋₆cycloalkyl, aryl or 5-6-membered saturated or unsaturated heterocyclic group with 1-2 heteroatoms, selected independently from O, S and N, which cyclic group may bear one or more substituents selected from halo and C₁₋₄alkyl);and R⁵⁹ is hydrogen, C₁₋₃alkyl, or a cyclic group selected from cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and a 5-6-membered saturated heterocyclic group with 1-2 heteroatoms, selected independently from O, S and N, which C₁₋₃alkyl group may bear 1 or 2 substituents selected from oxo, hydroxy, halogeno, C₁₋₄alkoxy and which cyclic group may bear 1 or 2 substituents selected from oxo, hydroxy, halogeno, cyano, C_{1-4} cyanoalkyl, C_{1-4} alkyl, C_{1-4} hydroxyalkyl, C_{1-4} alkoxy, C_{1-4} alkoxy C_{1-4} alkyl, C_{1-4} alkylsulphonyl C_{1-4} alkyl, $C_{1\text{-4}}$ alkoxycarbonyl, $C_{1\text{-4}}$ aminoalkyl, $C_{1\text{-4}}$ alkylamino, di($C_{1\text{-4}}$ alkyl)amino, $C_{1\text{-4}}$ alkyl, di($C_{1\text{-4}}$ alkyl)amino $C_{1\text{-4}}$ alkyl, $C_{1\text{-4}}$ alkyl, $C_{1\text{-4}}$ alkyl)amino $C_{1\text{-4}}$ alkoxy, di($C_{1\text{-4}}$ alkoxy and a group -(-O-)_f($C_{1\text{-4}}$ alkyl)_gringD (wherein f is 0 or 1, g is 0 or 1 and ring D is a cyclic group selected from C_{3-6} cycloalkyl, aryl or 5-6-membered saturated or unsaturated heterocyclic group with 1-2 heteroatoms, selected independently from O, S and N, which cyclic group may bear one or more substituents selected from halo and C_{1-4} alkyl)); and wherein R^a , R^b , R^b , R^c , R^c , R^c , R^d , R^g , R^j , R^n , R^p , R^p , R^p , R^p , R^u , R^u and R^v are independently selected from C_{1-8} alkylene groups optionally substitued by one or more substituents selected from hydroxy, halogeno, amino, R^e R^h, R^k and R^t are independently selected from C₂₋₈alkenylene groups optionally substituted by by one or more substituents selected from hydroxy, halogeno, amino, and R^t may additionally be a bond; and Amend line 23 in the paragraph starting on page 12, line 20, as follows: For instance, R^1 , R^2 , R^3 , R^4 are independently selected from, halo, cyano, nitro, trifluoromethyl, C_{1-3} alkyl, $-NR^7R^8$ (wherein R^7 and R^8 , which may be the same or different, each represents hydrogen or C_{1-3} alkyl), or other groups from formula $-X^1R^9$ [[(]]wherein X^1 represents a direct bond, -O-, $-CH_2$ -, -OCO-, carbonyl, -S-, -SO-, $-SO_2$ -, $-NR^{10}CO$ -, $-CONR^{11}$ -, $-SO_2NR^{12}$ -, $-NR^{13}SO_2$ - or $-NR^{14}$ - (wherein R^{10} , R^{11} , R^{12} , R^{13} and R^{14} each independently represents hydrogen, C_{1-3} alkyl or C_{1-3} alkoxy C_{2-3} alkyl), and R^9 is selected from one of the following groups: Amend lines 15 and 27 in the paragraph starting on page 16, line 13, as follows: In particular, R⁵ is substituted by one or more groups selected from halo, C₁₋₄alkyl, optionally substituted C₁₋₆ alkoxy, C₁₋₄alkoxymethyl, di(C₁₋₄alkoxy)methyl, C₁₋₄alkanoyl, trifluoromethyl, cyano, amino, C₂₋₅alkenyl, C₂₋₅alkynyl, a phenyl group, a benzyl group or a 5-6-membered heterocyclic group with 1-3 heteroatoms, selected independently from O, S and N, which heterocyclic group may be aromatic or non-aromatic and may be saturated (linked via a ring carbon or nitrogen atom) or unsaturated (linked via a ring carbon atom), and which phenyl, benzyl or heterocyclic group may bear on one or more ring carbon atoms up to 5 substituents selected from hydroxy, halogeno, C₁₋₃alkyl, C₁₋₃alkoxy, C₁₋₃alkanoyloxy, trifluoromethyl, cyano, amino, nitro, C₂₋₄alkanoyl, C₁₋₄alkanoylamino, C₁₋₄alkoxycarbonyl, C₁₋₄alkylsulphanyl, C₁₋₄alkylsulphinyl, C₁₋₄alkylsulphonyl, carbamoyl, N-C₁₋₄alkylcarbamoyl, N,N-di(C₁₋₄alkyl)carbamoyl, aminosulphonyl, N-C₁₋₄alkylaminosulphonyl, N,N-di(C₁₋₄alkyl)aminosulphonyl, C₁₋₄alkylsulphonylamino, and a saturated heterocyclic group selected from morpholino, thiomorpholino, pyrrolidinyl, piperazinyl, piperidinyl, imidazolidinyl and pyrazolidinyl, which saturated heterocyclic group may bear 1 or 2 substituents selected from oxo, hydroxy, halogeno, C₁₋₃alkyl, C₁₋₃alkoxy, C₁₋₃alkanoyloxy, trifluoromethyl, cyano, amino, nitro and C₁₋₄alkoxycarbonyl. Amend line 14 in the section starting on page 18 line 9, as follows: wherein D¹ is aryl, heteroaryl or heterocyclyl and E¹ is a bond, C₁₋₆alkylene, oxyC₁₋₆alkylene, oxy, imino, N-(C₁₋₆alkyl)imino, iminoC₁₋₆alkylene, N-(C_{1-6} alkyl)-imino C_{1-6} alkylene, C_{1-6} alkylene-oxy C_{1-6} alkylene, C₁₋₆alkylene-iminoC₁₋₆alkylene, C₁₋₆alkylene-N-(C₁₋₆alkyl)-iminoC₁₋₆alkylene, -NHC(O)-, -NHSO2-, -SO2NH- or -NHC(O)-C1-6alkylene-, and any aryl, heteroaryl or heterocyclyl group in a substituent on R^{[4]5} may be optionally substituted with one or more groups selected from hydroxy, halo, C₁₋₆alkyl, C₁₋₆alkoxy, carboxy, C₁₋₆alkoxycarbonyl, carbamoyl, N-C₁₋₆alkylcarbamoyl, N-(C₁₋₆alkyl)₂carbamoyl, C₂₋₆alkanoyl, amino, $N-C_{1-6}$ alkylamino and $N,N-(C_{1-6}$ alkyl)₂amino, and any C₃₋₇cycloalkyl or heterocyclyl group in a R⁷⁰ group may be optionally substituted with one or two oxo or thioxo substituents, and any of the R⁷⁰ groups defined hereinbefore which comprises a CH₂ group which is attached to 2 carbon atoms or a CH₃ group which is attached to a carbon atom may optionally bear on each said CH₂ or CH₃ group a substituent selected from hydroxy, amino, C₁₋₆alkoxy, N-C₁₋₆alkylamino, N,N-(C₁₋₆alkyl)₂amino and heterocyclyl; and R⁹⁹ is hydrogen or a group C(O)R⁷⁰ where R⁷⁰ is as defined above and is preferably hydrogen. Amend line 15 in the paragraph starting on page 19, line 11, as follows: More suitably R^5 is substituted by a group $-X^{10}(CH_2)_{p'}-X^{11}R^{100}$ or $-X^{13}R^{100}$ where p' is 1-3, X^{10} and X^{11} are independently selected from a bond, -O-, -S- or NR^{101} - where R^{101} is hydrogen or a $C_{1\text{-}3}$ alkyl, provided that one of X^{10} or X^{11} is a bond; X^{13} is -O-, -S- or NR^{102} - where R^{102} is hydrogen or a $C_{1\text{-}4}$ alkyl and R^{100} is hydrogen or optionally substituted hydrocarbyl or optionally substituted heterocyclyl heterocyclyl. Suitable optional substituents for hydrocarbyl and heterocyclyl groups R^{100} include functional groups as defined above. Preferred groups R^{100} are hydrocarbyl or heterocyclyl groups which are included in the definition of R^{70} as defined hereinbefore. Preferably one of X^{10} or X^{11} is other than a bond. Docket No.: ASZD-P01-598 Amend line 26 in the paragraph beginning on page 21, line 21, as follows: When R^{83} or R^{84} is an optionally substituted alkyl group, it is suitably a C_{1-6} alkyl group, optionally substituted with one or more functional groups (such as cyano, hydroxy, alkoxy in particular methoxy or ethoxy, alkylthio in particular methylthio, COOalkyl such as COOCH₃), or aryl optionally substituted with a functional group as defined above (in particular in relation to R^{83} or R^{84} themselves, or an optionally substituted heterocyclic group such as N-methyl pyrrole). Amend sub-formula (f) on page 20, as follows: $$(CH_2)_{p''} \longrightarrow N R^{83}$$ R^{84} (f) Amend line 24 in the paragraph starting on page 40, line 10, as follows: Aqueous suspensions generally contain the active ingredient in finely powdered form together with one or more suspending agents, such as sodium carboxymethylcellulose, methylcellulose, hydroxypropylmethylcellulose, sodium alginate, polyvinyl-pyrrolidone, gum tragacanth and gum acacia; dispersing or wetting agents such as lecithin or condensation products of an alkylene oxide with fatty acids (for example polyoxyethylene stearate), or condensation products of ethylene oxide with Application No. 10/088856 long chain aliphatic alcohols, for example heptadecaethyleneoxycetanol, or condensation products of ethylene oxide with partial esters derived from fatty acids and a hexitol such as polyoxyethylene sorbitol monooleate, or condensation products of ethylene oxide with long chain aliphatic alcohols, for example heptadecaethyleneoxycetanol, or condensation products of ethylene oxide with partial esters derived from fatty acids and a hexitol such as polyoxyethylene sorbitol monooleate, or condensation products of ethylene oxide with partial esters derived from fatty acids and hexitol anhydrides, for example polyethylene sorbitan monooleate. The aqueous suspensions may also contain one or more preservatives (such as ethyl or propyl p-hydroxybenzoate), anti-oxidants (such as ascorbic acid), colouring agents, flavouring agents, and/or sweetening agents (such as sucrose, saccharine or aspartame).